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Threefold and twofold internal rotation reactions and their reaction graphs are 
enumerated using the generalized wreath product method developed by the 
author in an earlier paper. The correspondence between reaction directed 
graphs (digraphs) and finite topologies on isomers is established. It is shown 
that the reaction digraphs can be represented by Borel fields. Atropisomerism in 
polyphenyl compounds is discussed. Applications to spontaneous generation of 
optical activity and NMR spectroscopy are considered. Borel fields are enumer- 
ated by bumping squares of the upper rows of  Young diagrams starting from 
the Young diagram containing just one row. 
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1. Introduction 

While the topological representation and the enumeration of permutation isomeriza- 
tion reactions of inorganic complexes has been well studied [1-4], the isomerization 
reactions and the reaction graphs due to internal rotations in organic compounds 
have not been enumerated. One of the problems was to construct a group that 
includes the point group operations and the permutations induced by internal 
rotations. Davidson [5] and Balasubramanian [6] observed that internal rotations in 
ethane can be described by wreath product groups. Balasubramanian [7] (hereafter 
referred to as paper I) further extended this to a generalized wreath product group 
for characterizing internal permutations and for enumerating the stereo and posi- 
tion isomers of polysubstituted organic compounds. Leonard [8, 9] enumerated the 
isomers of non-rigid cyclohexane molecules. Balaban [10] enumerated the reaction 
graphs of degenerate rearrangements via 1-2 shifts of carbenium ions derived from 
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homovalenes. Balaban [11] recently enumerated the graphs of intramolecular 
rearrangements of tetragonal-pyramidal complexes. Klein and Cowley [12] enumer- 
ated the permutational isomers with bidentate ligands and other constraints using 
the double coset method of Ruch e t  al .  [13]. Extensive expositions of the chemical 
applications of graph theory are available in the review papers of Rouvray [14, 15] 
and the book of Balaban [16]. We use the combinatorial theorem of Pdlya [17] and 
the readers can find the preliminary concepts related to this theorem elsewhere [18]. 
The present paper of the author uses the results and the theorems developed in I. 
Discussions on the cycle index of generalized wreath product groups that appear in 
I will not be repeated here. 

The object of the investigation is to obtain the graphs describing the interrelation- 
ship of isomers induced by internal rotations and to develop an efficient abstract 
representation of internal rotation reactions which is achieved through finite 
topologies. Further, we outline the theoretical basis of spontaneous generation of 
optical activity. The methods expounded are used for representing the interconver- 
sions of magnetically equivalent protons (or any nuclei) and, therefore, the effect of 
internal rotation on the NMR spectrum is discussed. The unlabelled Borel fields 
which correspond to internal rotation reactions are enumerated by generating 
Young diagrams through a "bump algorithm". 

2. Theory of the Enumeration of Isomerization Reactions 

The enumeration of configurations under a group action reduces first to obtaining 
the cycle index of a permutation group and then generating a configuration counting 
series using the theorem of P61ya. The cycle index of a permutation group is defined 
a s  

1 

g~G 

where s~ls~2.  �9  is a representation of a typical permutation g in G having al cycles 
of length l, a2 cycles of length 2 and so on. The number of isomers of a molecule 
containing b l substituents of the type F~, b2 substituents of the type F2 etc., is given 
by the coefficient of c~1a~2 �9 �9 �9 in the configuration counting series, 

where ~ is the weight assigned to the substituent F~; the symbol sk ---> ~ ~ stands 
for the operation of replacing every cycle of length k with ~ a~ in Pa. 

To enumerate the internal rotation reactions, the configuration counting series for 
both the rigid and non-rigid molecules are generated. If two isomers of a rigid 
molecule are transformed into each other by a mechanism which introduces non- 
rigidity, then they are said to belong to the same class. Thus, isomers of different 
classes cannot be transformed into each other. The coefficients of ~ 1 ~  �9 �9 �9 in the 
configuration counting series of rigid and non-rigid molecules give the number of 
isomers and the number of classes of isomers respectively. We indicate the possible 
interconversions among isomers by suitable arrows. 
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Example: Substituted ethanes 

Consider the non-rigid ethane molecule in the eclipsed conformation. (The stag- 
gered conformation, however, does not drastically alter the treatment.) The rota- 
tional subgroup of the point group can be seen to be Da. The cycle index of Da 
acting on the six unspecified vertices is given by (1). 

PG a 6 = ~(sl + 2s~ + 3s~). (1) 

If one maps the six vertices into substituents of the type, F1, #'2 . . . . .  the following 
configuration counting series is generated by P61ya's theorem. 

c = -~{(m + ~ + . . .  + ~ )~  + 2(~, ~ + 4 + . . .  + 4 )  ~ 

+ 3(c~ + c~ + . . .  + c~) 3} (2) 

where cq is the weight assigned to F~. For example, the number of isomers of the 
rigid molecule C2H2Br2C12 is the coefficient of ~1~2~a ~'~ 2 2 in (2), which is 

The rotational subgroup of the non-rigid ethane molecule is C2[Ca] which stands 
for the wreath product of C2 with Ca. The cycle index is obtained by letting n = 2 

H 1 
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Fig. 2. The components of the reaction graph of 
CzH2Br2C12 and the isomers of the non-rigid 
molecule C2HzBr~CI> The vertices with and with- 
out the bar are mirror images of  each other 
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in the general expression already derived in Ref. [7] for linear substituted alkanes. 
The configuration counting series is given by Eq. (3). 

c = -&-[(~ + ~ + . . .  + ~)~ + 4 (~  + ~ + . . .  + ~)~ 

x (a~ + ,~ + . . .  + ,~) + 4(,~ + ~ + . . .  + ,z~) 2 

+ 3(~ + ~ + . . .  + ~)3 + 6(~ + ~g + . . .  + ~)]. (3) 

For example, the number of non-rigid isomers of C2H2Br2C12 is given by the 
coefficient ~ ~ 2 of cqc~2~3 in (3), which is 

~-tg[90 + 181 = 6. 

The isomers and the isomerization reactions are shown in Fig. 1. 

A graph is constructed with the vertices as isomers of the rigid molecule. Two 
vertices i and j will be connected if there exists an operation in the rotational sub- 
group of the non-rigid molecule that transforms the isomer i into j. Such a reaction 
graph for C2H2Br2C12 is shown in Fig. 2. 

3. Properties of Reaction Graph 

We start with certain terminologies. A path in the reaction graph that connects 
enantiomers is called a d/-path. If  a non-rigid molecule is optically active, then 
there is no operation in the rotational sub-group of the non-rigid molecule that can 
convert it into its enantiomer. Hence, all the rigid isomers of this pair of non-rigid 
enantiomers will belong to different classes. Consequently, the rigid isomers of a 
non-rigid d/-pair are the vertices of different components of the reaction graph 
and there will be no d/-path in each component. If  a non-rigid molecule is optically 
inactive, and if any of its rigid isomers are optically active, then there will necessarily 
be a d/-path in the component formed by these rigid isomers. The reaction graph 
will be connected only if the isomer count of the corresponding non-rigid molecule 
is one. The number of components of the reaction graph is the isomer count of the 
non-rigid molecule. All the non-trivial components of the reaction graph containing 
three or more vertices are Hamiltonian. We represented the isomerization reactions 
by undirected graphs. Actually, since the reactions are directed, their graphs can be 
undirected only if there is a back reaction for every reaction. If  one envisages a 
directed reaction graph, then the following theorems immediately follow. Theorem 
1 justifies the undirected representation. The following theorems are true for all the 
reaction graphs arising from internal rotations. 

Theorem 1. If  there is an edge from the vertex i to the vertex j in the graph, then 
there is also an edge from j to i. 

Proof. There is an edge from i to j if there exists a permutation g in the rotational 
subgroup of the non-rigid molecule that can convert i to j. Since the inverse of 
every element exists in a group, and since g - 1 converts j to i, the result follows. 

Theorem 2. If  there are edges from i to j and j to k in the reaction graph, then there 
is also an edge from i to k. 
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Proof. Let gl and g2 be the permutations in the rotational subgroup of the non- 
rigid molecule that converts i to j and j to k respectively, gig2 is also in the group 
and it converts i to k. Consequently, the result follows. 

A directed graph is said to be transitive if the existence of the edges ~/andjk implies 
the existence of the edge ik. Let S be a set of n elements. Then a finite collection of 
subsets of S (includes the null set ~ and the whole set S) that is closed under union 
and intersection is called a finite labelled topology on n points. Alternatively, a finite 
topology contains the union and intersection of any two sets in the collection. 
Evans et al. [19] established the correspondence between a transitive directed 
graph on n points (hereafter called trans digraph) and a finite labelled topology on 
n points. Thus, in fact, internal rotation reactions can be represented in an abstract 
form by the finite topology on isomers. Given a trans digraph, a finite topology (all 
topologies under discussion are labelled) is constructed stipulating that i will be 
in every neighborhood o f j  (i.e., i will be in every subset of S containing j )  if and 
only if there is an edge from i to j in the trans digraph (reaction digraph). Let us 
illustrate this construction using C2H2Br2C12 as an example. (See Fig. 2.) The finite 
topology that characterizes the internal rotation reactions of C2H~Br2C12 is 

[~, {1, T, 2}, {3, 3, 4}, {5, 5, 6}, {7, 7, 8}, {9, 10, 11}, {9, i0, ii}] 
where the square bracket stands for the union-span of the elements inside the 
square bracket. A union-span of a set is a collection of all possible unions of the 
elements in the set. There will be 2 6 objects in the union-span of the set shown above 
for C2H2Br2C12, which is a finite topology on the isomers of C2H2Br2C12. 

A labelled Borel field on n points is a labelled topology such that if i is in the neigh- 
borhood o f j  thenj  is also in the neighborhood of i. As a consequence of Theorem 1, 
the finite topologies representing internal rotation reactions are Borel fields. The 
fact that the topologies on isomers are Borel fields leads to the following theorem. 

Theorem 3. The components of the reaction digraph are either trivial or they are 
complete. 

Proof. We shall prove the theorem by induction. If  a component is non-trivial and 
contains two vertices, then by Theorem 1 it is complete. If  the component contains 
three vertices then the existence of any arbitrary edges ij andjk  implies the existence 
of the edge ik, by Theorem 2. Now, by Theorem l, there are edges fi, kj, and ki in 
the reaction graph. Hence the component is complete. Let us therefore assume that 
all components containing m or less vertices are complete. Let Cm be a component 
containing m vertices. Let us add the vertex (m + 1) to Cm and show that the result- 
ing component Cm+ ~ is complete. Since, by definition, a component is connected, 
there exists at least one edge, i, m + 1 connecting a vertix i in Cm and the vertex 
(m + 1). By induction hypothesis, Cm is complete and, hence, the existence of the 
edges li, 2 i , . . . , f i , . . . ,  mi is assured in both Cm and Cm+l. ( j  ~ i). As a conse- 
quence of Theorem 2, the existence of these edges and the edge i, m + 1 will imply 
the existence of the edges (1, m + 1), (2, m + 1) . . . . .  (m, m + 1). Thus by Theorem 
1, there exist edges (m + 1, 1)- - �9 (m + 1, m) in the reaction graph. Hence Cm+~ is 
complete. 
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This property of the completeness of the components of a reaction digraph, 
enables simplification of the representation of the reaction digraph in terms of 
topologies. 

Introduce a binary operation @ on the elements of the Borel field. For any two sets 
$1 and $2 in the Borel field, define 

$1@$2 = $ 1 ~ $ 2 -  S i n S 2 .  

where ~ and n stand for the union and intersection of two sets. It can be verified 
that the Borel field is closed under @. Moreover, it forms a group under the 
operation @. ~ ,  the null set is the identity. Every element is its inverse. It also forms 
a vector space over the field ~- of scalars containing two elements, namely, 0 and 1 
with the definition that for any S in the Borel field 

1 . S =  S, 0 . S = ~ .  

Now, one can introduce the concept of linear independence and basis. A set of 
elements in the Borel field is said to be linearly independent, if and only if 

@ 

implies all/~ = 0; where ~ ~ ~ ,  S{s are the elements of the set whose linear in- 
dependence is under consideration; @ sign below ~ indicates that it is a linear 
combination with respect to @. The span of a set A, [A], is the set of all linear 
combinations of the elements of A. A linearly independent set that can span the 
Borel field is called a basis of the Borel field. The number of elements in the basis 
is the dimension of the Borel field. To illustrate, consider the molecule C2H2Br2CI2. 
The following set forms a basis for the Borel field of C2H2BrzC12 (see Fig. 2). 

B = {(1, i ,  2}, {3, 3, 4}, {5, 3, 6), {7, 7, 8), {9, 10, 11), {w 10, 11)). 

It is interesting to note that the elements of B are the non-rigid group-equivalence 
classes of C2H2Br2C12, wherein two isomers are equivalent if one is transformable 
into another by an element of the rotational subgroup of the non-rigid molecule. 
Thus a basis of the Borel field can be generated by the non-rigid group-equivalence 
classes. However, note that the non-rigid group-equivalence classes need not be the 
only basis. For example, the set B' shown below is also a basis for the reaction graph 
of C2H2Br2C12. 

B' = {{1, i, 2), {1, i, 2, 3, 3, 4), {3, 5,6, 7, 7, 8), {7, 7, 8), {9, 10, 11, 9, 10, 11), 

(~, lO, l 1)). 

Nevertheless, one can always construct B from B' or vice versa using the binary 
operation @. For any given basis B, there will be an edge from i t o j  in the reaction 
graph if i is in every set containingj in the basis. 

4. General Cases 

Consider, now, in general a molecule containing any number of carbon atoms. The 
permutation group of such a non-rigid molecule is the generalized wreath product. 
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Expressions for isomers have already been derived in Ref. [7]. In this paper we shall 
only state the results that we need. The number of isomers of linear C~H2~ + 2-~ Xk 
is given by (4) if k is odd and by (5) if k is even. We indicate them by Ig- and Ik* 
respectively. 

I k - = ' ~ g f ( 2 n ;  2 ) +  4(2n k 1 ) +  4(2; - ~ ) +  4(2n k 4) 

+ 8 ( 2  2 4 )  + 4 ( 2 ; 2 4 ) }  (4) 

{ I n +  lXk,2 6{n-2~\  k,2 , ( n - 2  ) } ( k _  6),2 Ik+ = -~�89 18Ik- + 3[ ) + + 6 (5) 

where Ik- in (5) is given by (4). The rotational subgroup of the corresponding rigid 
molecule is C2. The cycle index is given by (6) for both the parities of n. 

Pa = !t..z,~+2 x,~+l) 2~1  + (6) 

It can be seen from the counting series generated from (6) that the number of 
isomers of rigid linear C.H2.+2_k Xk is given by (7) if k is odd and by (8) if k is 
even. 

§ 

I;+ = �89 + 

(7) 

n + (8) 
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Fig. 3. The components of the reaction graph and the isomers of the non-rigid molecule CaH6X2 
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The isomers obtained from (7) or (8) are partitioned into equivalence classes, 
applying the criterion of  (non-rigid) group-equivalence introduced before. The 
number of classes or the dimension of the Borel field is given by (4) or (5). Internal 
rotation reactions can be enumerated using the elements of the Borel field. For 
example, for C3H6X2, the isomer counts of rigid and non-rigid structures are 16 
and 5 respectively. A basis of the Borel field can be easily constructed by generating 
the (non-rigid) group-equivalence classes. Suppose the rigid isomers are numbered 

such that the enantiomer pairs bear the numbers i and i, then the following set is a 
basis of the Borel field of CaH6X2. 

B = {(1, i ,  2}, (3, 4, 5}, (3, 7~, 5}, {6), (7, 7, 8, 8, 9, 10)}. 

The reaction graph for CaHaX2, which can be easily constructed using the one-to- 
one correspondence, between a finite topology and a transitive digraph, is shown in 
Fig. 3. 

5. Atropisomerism in Polyphenyl Compounds 

In this section we use the Sheehan's [20] generalization of  P61ya's theorem. First, 
the Sheehan's procedure is briefly outlined. 

Let I11, Y2 . . . . .  Yz be a partition of a set D into l subsets. Let R1, R2 . . . . .  R~ be a 
partition of the set R. Consider the set J of all functions from D to R with the 
restriction 

o~'(Y~) c R~, i = 1, 2 . . . .  , l. 

Let G be a permutation group acting on D such that all its orbits are contained in 
the same Y-set. Two functions f l  and f2 from D to R are G-equivalent if there 
exists a g e G such that 

UI(Y,j) = f2(gY, j )  

where y~j E Y~, j = 1, 2 . . . . .  [ D d, i = 1, 2 . . . .  , l. 

Since all the orbits of g ~ G are contained in the same Y-set, the cycle index of  G 
is of the form 

1 

where C~j(g) denotes the number officycles of g contained in the set Y~; S~j is a 
representation of aficycle in the set Y~. Let c9~ be the weight assigned to an element 
~,j~ ~ R~. In this set-up we have the Theorem 4. 

Theorem 4 (Sheehan). The generalized configuration counting series is obtained 
with the following substitution in Pa. 

k 

where k = 1, 2 . . . . .  IRd. 
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Now consider a string o fn  phenyl rings in one plane. Insert (n - 1) phenyl rings in 
the "ga ps"  in between two successive rings, in a plane perpendicular to both of 
them. Thus, in the resulting polyphenyl of 2n - 1 rings, the rings are alternately in 
planes perpendicular to each other. We map only the vertices of a phenyl ring that 
face the adjacent rings into substituents. It can be seen that the number of such 
vertices is 4(n - 1) + 4(n - 2) + 4. The rigid arrangement of such rings has D2 
rotational symmetry. The rings 1 and 2n - 1, 2 and 2n - 2 etc. transform into 
each other under certain operations of D2. Hence, it is appropriate to partition the 
set of rings into sets Y1, ]12,. �9 each consisting of two rings except when n is odd. 
If n is odd, the central ring is itself a set. Let S~j denote a j cycle generated in the 
set Y~ by an element in the group. Then it can be seen that the cycle index of such a 
rigid linear polyphenyl system is given by (9). 

ea = �88 s?l + 3s 2 ,2! .2j. (9) 

The configuration counting series is obtained using Theorem 4 and it is given by 
(10). In (10), ~j denotes the weight assigned to a functional group F ,  attached to an 
element in the set Yj. 

+ 3 ;1} . (10) 
~]=i / (.5=2 ~\]=i 

For example, the number of atropisomers of the triphenyl C6H~X. C6a2b2. C6HaX, 
is the coefficient 2 2 2 2 of ~11~12~2z~2z in (10), with n = 2, which is 

The cycle index of non-rigid polyphenyls can be obtained using Theorem 1 of I. 
Davidson [5] also derived the cycle index of the corresponding non-rigid poly- 
phenyls using the wreath product groups. For the triphenyl under consideration, 
the cycle index can be seen to be (11). 

2 4 Pa -- -~-[(S?~ + 2S~S~2 + S~2)($2~ + S~2) + 4Sff2(S~2 + S~)]. (11) 

The corresponding counting series is given by (12) 

4 4 2 

+ 4 ~2 c~y~ + ~,  (12) Y2 
/ k \ / = l  
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Fig. 4, Isomerization reactions due to twofold rotations in a triphenyl 
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Fig. 5. The reaction graph of the isomerization reaction shown in 
Fig. 4 

The coefficient 2 2 2 2 of c~na12~21~22 in (12), which gives the number of isomers of non- 
rigid C6H~X. C6a2b2. C6HsX, is 

16[<(242)  + 2 + 2 + ( 1 2 1 ) } < ( 2 4 2 )  + ( 1 2 1 ) ) +  4(1 2 1 ) ( 1 2 1 ) 3  =7" 

The rotation reactions are shown in Fig. 4 and the reaction graph is shown in 
Fig. 5. 

6. Spontaneous Generation of Optical Activity 

Spontaneous generation of optical activity is a topic of current interest [21]. In this 
section we present a graph theoretical method of identifying the number of phases 
into which a compound solidifies, and the number of phases that will be optically 
active. Since enantiomers have identical thermodynamic potentials, the equality 
of potentials of two chiral phases is always satisfied. This introduces an additional 
degree of freedom, and thus the thermodynamic stability of two enantiomorphic 
phases is explained. Consequently, an achiral molecule may solidify into distinct 
chiral (enantiomorphic) yet stable phases. The phenomenon is referred to as the 
spontaneous generation of optical activity, [2t]. If there is a dl-path in the reaction 
digraph, then, when the corresponding molecule solidifies it will resolve into 
enantiomorphic phases and thus lead to spontaneous optical resolution. One can 
predict from the reaction graph whether an achiral molecule, when it solidifies, 
will lead to spontaneous optical resolution or not. The number of optically active 
phases in the solid state can be obtained from the reaction graph. In the Borel field 
representation the necessary and sufficient condition for spontaneous optical 
resolution of a dl-pair is the presence of both the enantiomers in any set of a basis 
that contains one of them. For example, the achiral molecule CH2X. CH2. CH2X 
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(see Fig. 3) will solidify into six phases four of them optically active, wherein there 
are two classes of chiral phases. 

7. Application to N M R  Spectroscopy 

Balasubramanian [7] has already shown that the coefficient of ~ -1~2  in the con- 
figuration counting series gives the number of NMR signals of a compound con- 
taining M protons. Here we compare the results of both the rigid and non-rigid 
molecules and represent the possible interconversions among the protons by a basis 
of the Borel field. Consider the molecule CHaCHC1CH2C1. Starting from the 
methyl protons, number the protons. The NMR inventory [7] of the non-rigid 
molecule CHaCHC1CH2C1 is given by (13). 

C = 1[(% + %)6 + 2(cqa + ~)(~, + ~2)a]. (13) 

Consequently, the number of NMR signals is given by the coefficient of ~ 2  in 
(13), which is 

� 8 9  + 2 ( 2 3 1 ) ]  = 4 .  

The six protons are partitioned into the classes {1, 2, 3}, {4}, {5}, {6). 

When the molecule is rigid, the point group of the root-to-root product [7] is the 
group containing only the identity. The configuration counting series is given by (14). 

C = (% + %)6. (14) 

As a result, the number of NMR signals at low temperature, when the molecule is 
essentially rigid, is 

( 5 6 1 )  = 6 .  

Now, every proton is itself a class. The possible interconversions among the protons 
are indicated by their reaction graph in Fig. 6. A basis of the Borel field of the 
reaction graph is 

B = ({1, 2, 3), (4), {5}, (6)). 

Note that the set B' = ({1, 2, 3, 4}, (1, 2, 3}, (5, 6}, {6}} is also a basis, for the same 
reaction graph. This clearly shows that the methylene protons 5 and 6 can never be 
interconverted by internal rotation, since in any basis 6(5) occurs in a set where 5(6) 

Fig. 6. The NMR reaction graph of the molecule CH3'CHC1.CHaCI. The 
vertices are the protons. The labels 1, 2, 3 correspond to the methyl protons; 
number 4 corresponds to the proton in CHC1 group and 5 and 6 are the 
methylene protons 

2 

V 
3 

2 ; ;  
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is not present. Although this is a well-known result, we have here a general approach 
for any molecule. Thus, the effect of non-rigidity is to coalesce the three NMR 
signals due to methyl protons into a single signal. This will explain the classical and 
well-known result that the NMR spectrum of the molecule PC15 contains only one 
signal. Even though, the point group of the rigid PC15 molecule is Dab, the group of 
the non-rigid molecule, the non-rigidity introduced through the Berry mechanism, 
is $5. ($5 stands for the symmetric group, containing 5! elements.) The coefficients 
of ~a2 in the NMR inventories [15] and [16] of rigid and non-rigid molecules can 
be seen to be 2 and 1 respectively, explaining one NMR signal contrary to two 
signals. 

__12_[(% + %)5 + 2(al + a2)2(a~ + ~)  + 3(~1 + %)(~ + ~)2 

+(~1 + %)3(a~ + a~) + 2(~ + a~)(~ + ~a)+3(%+%)a(c~+a~) ] ,  (15) 

r1 [ (% + %)5 + 10(% + %)a(a~ + ~)  + 20(~, + %)2(%a + ~)  

+ 30(~1 + ~:)M + ~)  + 15(~, + ~=)(~,~ + ~)= 

+ 20(a~ + a~)(c~ + ~=a) + 24(c~ + ~)]. (16) 

A non-trivial example exemplifying the effect of internal rotation on the NMR 
spectrum is propane. The symmetry groups of rigid and non-rigid molecules are 
C2~ and C2~[Ca, E] respectively. The NMR inventories of the rigid and non-rigid 
propane are given by (17) and (18) respectively. 

�88 + %)8 + 2(% + %)2(c~ + ~)a + (~  + cz~)~], (17) 

5~-[(~ + %)s + 4(~ + %)s(~ + a~) + 4(a, + %)=(~a + a~)= 

+ 3(a~ + ~)* + 6(a~ + a~)(a~ + a~) + 12(% + %)~(r + a~)a 

+ 6(% + a~)~(a~ + a~)]. (18) 

The coefficients of a~% in (17) and (18) are (19) and (20) respectively. 

~ [ ( 7 8 1 )  + 4 ( 4 5 1 )  + 4 ( 1 2 1 ) +  1 2 ( 1 2 1 ) +  6(121}1 = 2 '  (20) 

If one labels the two sets of methyl protons {1, 2, 3} and {6, 7, 8} and if the methylene 
protons are labelled 4 and 5 the eight protons are partitioned into the following 3 
classes at very low temperatures with the convention that a % plane of the C2~ 
group passes through the protons 1 and 6. 

{1, 6}, {4, 5}, {2, 3, 7, 8}. 

Thus, at low temperature this method predicts 3 NMR signals, 2 due to 2 classes 
of methyl protons and one attributed to methylene proton with the intensity ratio 
1:2: 1. However, at high temperature the eight protons are partitioned into just 2 
classes shown below. 

{1, 2, 3, 6, 7, 8), {4, 5}. 
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Consequently, at high temperature one observes only 2 signals with the intensity 
ratio 3:1 and the effect of  internal rotation is to coalesce the 2 N M R  signals (1:2) 
due to methyl protons into 1 signal. 

8. Enumeration of Unlabelled Borel Fields and a Dissection of the 
Numbers P~ 

The one-to-one correspondence established between Borel fields and reaction 
digraphs yields a concrete procedure for enumerating the possible types of internal 
rotation reactions, since unlabelled Borel fields on n points can be enumerated. 
Krishnamurthy [22] showed that the labelled Borel fields on n points can be 
enumerated by a dissection of the Stirling numbers of the second kind. He intro- 
duced the combinatorial numbers A(n: r :p), the number  of labelled Borel fields on 
n points containing p components and r 2-cycles. The enumeration of unlabelled 
Borel fields which is of  interest to us can be done in an analogous manner. Since 
each component  of  a Borel field is trivial or complete, the number of  unlabelled 
Borel fields on n points containing p components corresponds to the number of  
ways of distributing n indistinguishable objects into p indistinguishable cells. This 
can be done in P f  ways, where P f  denotes the number of  unordered partitions of the 
integer n into p parts. A generating function for P f  can be readily obtained [23]. 
It is 

f(x) = x ' ( l  - x)- l (1  - x2) - 1 . . .  (1 - x ' )  -~ (21) 

The coefficient of  x ~ in (21) gives Pg. 

With every unordered partition of an integer n we can associate a Ferrer 's diagram 
also known as Young's  diagram in the literature of  physics and chemistry. The 
number of  squares in each row decreases as we descend from top to bottom. The 
number  of squares in any column decreases as we move from left to right. For  ex- 
ample, the Ferrer 's diagram which corresponds to the partition 4 + 3 + 1 is 
shown in Fig. 7. To a partition of an integer n into m parts we can assign a Ferret 's  
diagram containing m rows. Given a Ferrer 's diagram corresponding to a partition 
of n into m parts, an unlabelled Borel field is determined as follows. Let the number 
of  squares in the ith row of Ferrer 's diagram be n~. Then a Borel field is constructed 
on n vertices containing m components. The ith component  contains n~ vertices 
and the number of  edges in this component  is 2([ 0. Thus the Borel field (unlabelled) 
is uniquely determined. To illustrate, the Borel field which corresponds to Ferrer 's 
diagram in Fig. 7 is shown in Fig. 8. Hence unlabelled Borel fields can be enumera- 
ted if we can enumerate all Ferrer 's diagrams corresponding to the partition of a 
given integer n. The number of  partitions can be found easily using generating 
functions. We formulate here an algorithm which we shall call the " b u m p  algor- 
i t hm"  for generating the unlabelled Borel fields on n points. The motivation for 

IJ' 
Fig. 7. The Ferrer's diagram which corresponds to the partition 4 + 3 + 1 
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i Xi 
Fig. 8. The Borel field which corresponds to the Ferrer's diagram shown in 
Fig. 7 

this algorithm takes its origin from the algorithm "Inser t"  used by Krishnamurthy 
[24], wherein certain entries of  the Young Tableau are " b u m p e d "  to enumerate 
finite topologies. 

Start with the partition of the integer n into one part whose Ferrer's diagram con- 
tains just one row with n squares. Then a square at the extreme right in an upper 
row containing more than one square is pushed down (bumped) and either a new 
row is created or the length of a lower row is increased. The bumping process 
should be executed in such a way that the properties of the Ferrer's diagram (out- 
lined above) are preserved. This process is continued until one reaches Ferrer's 
diagram which corresponds to the partition of the integer n into n parts. The 

\ 
I l l  I 1 1  

I I I l l l  I l l  
H " -x  

U 

Fig. 9. The spanning tree of Young diagrams containing 7 squares generated by bump algorithm 

I I 1 1 1 1 1 1  

I l l l l l l  
I I  
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algorithm can be most efficiently executed by growing a spanning tree. This can 

be effected stipulating that 

1) a square is always bumped from an upper to a lower row and never in the 
reverse direction; 

2) a square is bumped from an upper row to the first lower row that can accommo- 

date the square; 
3) the tree will not be grown from a diagram which has more than two squares in 

the first row and a square in all lower rows; such vertices can be called leaves; 
4) bumping from lower rows are continued, keeping the length of  the first row con- 

stant until one reaches a leaf. 

The algorithm is illustrated by finding all the Ferrer's diagrams which correspond 
to the partitions of the integer 7 in Fig. 9. 

This enumeration of unlabelled Borel fields provides the possible types of iso- 
merization reactions arising from internal rotations. Alternatively, any inter- 
relationship among isomers can be described by one of the Borel fields. Further, 
this enumeration gives insight into the possible N M R  spectra of non-rigid molecules 
containing a set of n nuclei possessing magnetic moment. For example, Table 1 
shows non-rigid molecules containing four protons and their NMR spectra as 
obtained from their Borel fields. 

Table 1. Non-rigid molecules containing four protons, their Borel fields and NMR spectra 

NMR Spectrum 

Ferrer's Number of Intensity 
S-No. Non-rigid molecule diagram Borel field peaks ratio 

1. CH2CI' CH2CI 

2. c 3.cHc,2 J .2 

3. CHCI~CH2CHC12 ~ �9 2 2:2 

4. CHCI~. CH2' CHBr2 , 3 2:1:1 

5. CH2C1. CHC1. CHC12 ~ 4 1 : 1 : 1 : 1 
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9. Conclusion 

In  this paper  we enumerated the reaction graphs of non-r igid molecules. There are 

interesting cases where the problem is no t  straightforward. For  example, the 

enumera t ion  of  stable stereo and posi t ion isomers of polysubsti tuted alcohols 

involves the principle of inclusion and exclusion under  a group action on the set of 

properties [25]. Thus, the corresponding reaction digraphs and the Borel fields 

should be enumerated by incorporat ing the principle of inclusion and exclusion. 
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